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Abstract. A numerical method is described for evaluating transverse spin correlations in the random
phase approximation. Quantum spin-fluctuation corrections to sublattice magnetization are evaluated for
the antiferromagnetic ground state of the half-filled Hubbard model in two and three dimensions in the
whole U/t range. Extension to the case of defects in the AF is also discussed for spin vacancies and low−U
impurities. In the U/t → ∞ limit, the vacancy-induced enhancement in the spin fluctuation correction is
obtained for the spin-vacancy problem in two dimensions, for vacancy concentration up to the percolation
threshold. For low-U impurities, the overall spin fluctuation correction is found to be strongly suppressed,
although surprisingly spin fluctuations are locally enhanced at the low−U sites.

PACS. 75.10.Jm Quantized spin models – 75.10.Lp Band and itinerant models – 75.30.Ds Spin waves

1 Introduction

Transverse spin fluctuations are gapless, low-energy exci-
tations in the broken-symmetry state of magnetic systems
possessing continuous spin-rotational symmetry. There-
fore at low temperatures they play an important role in
diverse macroscopic properties such as existence of long-
range order, magnitude and temperature-dependence of
the order parameter, Néel temperature, spin correlations
etc. Specifically in the antiferromagnetic (AF) ground
state of the half-filled Hubbard model transverse spin fluc-
tuations are important both in two and three dimensions,
where antiferromagnetic long-range order (AFLRO) ex-
ists at T = 0. In the strong-coupling limit (U/t → ∞),
where spin fluctuations are strongest, they significantly
reduce the zero-temperature AF order parameter in two
dimensions to nearly 60% of the classical (HF) value
[1–4]. Similarly the Néel temperature in three dimen-
sions is reduced to nearly 65% of the mean-field result
TMF

N = zJ/4 = 6t2/U , for the equivalent S = 1/2 quan-
tum Heisenberg antiferromagnet (QHAF) [5].

Recently there has also been interest in spin fluctua-
tions due to defects, disorder and vacancies in the quan-
tum antiferromagnet. In the random-U model, where U is
set to zero on a fraction f of sites, the lattice-averaged
AF order parameter appears to be enhanced for small
f , as seen in QMC calculations [6], presumably due to
an overall suppression of quantum spin fluctuations. On
the other hand spin fluctuations are enhanced by strong
disorder in the Hubbard model with random on-site en-
ergies. In the strong disorder regime, overlap of the two
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Hubbard bands leads to formation of essentially empty
and doubly-occupied sites, which act like spin vacan-
cies [7]. The problem of spin vacancies in the quantum
antiferromagnet is also relevant to the electron-doped ma-
terials like Nd2−xCexCuO4, where spin-dilution behavior
is observed [8,9]. While the problem of magnon energy
renormalization due to spin vacancies has been addressed
recently [10–15], these methods are limited to the low-
concentration limit, and the vacancy-induced enhance-
ment in transverse spin fluctuations has not been studied
in the whole range of vacancy concentration.

In this paper we describe a new method for
evaluating transverse spin correlations and quantum
spin-fluctuation corrections about the HF-level broken-
symmetry state, in terms of magnon mode energies and
spectral functions obtained in the random phase ap-
proximation (RPA). The method is applicable in the
whole U/t range of interaction strength, and is illus-
trated with three applications involving the AF ground
state of the half-filled Hubbard model — (i) the pure
model in d = 2, 3, (ii) spin vacancies in the strong
coupling limit in d = 2, and (iii) low-U impurities in
d = 2. This method for obtaining quantum correction to
sublattice magnetization solely in terms of transverse spin
correlations is parallel to the spin-wave-theory (SWT) ap-
proach [16,17], and differs from the method involving self-
energy corrections [18].

The RPA approach has been demonstrated earlier
to properly interpolate between the weak and strong
coupling limits for the spin-wave velocity [3,18]. By
going beyond the RPA level within a systematic inverse-
degeneracy expansion scheme, which preserves the spin-
rotational symmetry and hence the Goldstone mode
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order by order, it was also shown that in the strong cou-
pling limit identical results are obtained for all quantum
corrections, order by order, as from the SWT approach
for the QHAF [4]. A renormalized RPA approach has also
been devised recently to obtain the magnetic phase di-
agram for the three dimensional Hubbard model in the
whole U/t range, and the TN vs. U behaviour was shown
to properly interpolate between the weak and strong cou-
pling limits [5].

2 Transverse spin correlations

The method is based on a convenient way to perform the
frequency integral in order to obtain spin correlations from
spin propagators, and we illustrate it here for transverse
spin correlations. We write the time-ordered, transverse
spin propagator for sites i and j, 〈ΨG|T [S−i (t)S+

j (t′)]|ΨG〉
at the RPA level in frequency space as,

[χ−+(ω)] =
[χ0(ω)]

1− U [χ0(ω)]

=
∑
n

λn(ω)
1− Uλn(ω)

|φn(ω)〉〈φn(ω)|, (1)

where |φn(ω)〉 and λn(ω) are the eigenvectors and
eigenvalues of the [χ0(ω)] matrix. Here [χ0(ω)]ij =
i
∫

(dω′/2π)G↑ij(ω
′)G↓ji(ω

′ − ω) is the zeroth-order,
antiparallel-spin particle-hole propagator, evaluated in
the self-consistent, broken-symmetry state from the HF
Green’s functions Gσ(ω). Spin correlations are then ob-
tained from,

〈S−i (t)S+
j (t′)〉RPA = −i

∫
dω
2π

[χ−+(ω)]ij e−iω(t−t′)

= ±
∑
n

φin(ωn)φjn(ωn)
U2(dλn/dω)ωn

e−iωn(t−t′),

(2)

where the collective mode energies ωn are obtained from
1−Uλn(ωn) = 0, and λn(ω) has been Taylor-expanded as
λn(ω) ≈ λn(ωn)+(ω−ωn)(dλn/dω)ωn near the mode en-
ergies to obtain the residues. For convergence, the retarded
(advanced) part of the time-ordered propagator χ−+, hav-
ing pole below (above) the real-ω axis, is to be taken for
t′ < t (t′ > t). The frequency integral is conveniently
replaced by an appropriate contour integral in the lower
or upper half-plane in the complex-ω space for these two
cases, respectively, which results in equation (2).

3 Hubbard model in D = 2, 3

We first illustrate this method for the half-filled Hubbard
model in two and three dimensions on square and simple-
cubic lattices, respectively. In this case it is convenient to
use the two-sublattice representation due to translational
symmetry, and we work with the 2× 2 matrix [χ0(qω)] in

momentum space, which is given in terms of eigensolutions
of the HF Hamiltonian matrix [3]. The k-summation is
performed numerically using a momentum grid with ∆k =
0.1 and 0.05, in three and two dimensions, respectively.

Equal-time, same-site transverse spin correlations are
then obtained from equation (2) by summing over the dif-
ferent q modes, using a momentum grid with ∆q = 0.3
and 0.1 in three and two dimensions, respectively. We
consider t′ → t−, so that the retarded part is used, with
positive mode energies. From spin-sublattice symmetry,
correlations on A and B sublattice sites are related via
〈S+S−〉A = 〈S−S+〉B. Thus the transverse spin correla-
tions are obtained from magnon amplitudes on A and B
sublattices, and from equation (2) we have

〈S−S+〉RPA =
∑
q

(φA
q )2

U2(dλq/dω)ωq

〈S+S−〉RPA =
∑
q

(φB
q )2

U2(dλq/dω)ωq
· (3)

From the commutation relation [S+, S−] = 2Sz, the differ-
ence 〈S+S− − S−S+〉RPA, of transverse spin correlations
evaluated at the RPA level, should be identically equal to
〈2Sz〉HF. This is because both the RPA and HF approxi-
mations are O(1) within the inverse-degeneracy expansion
scheme [4] in powers of 1/N (N is the number of orbitals
per site), and therefore become exact in the limit N →∞,
when all corrections of order 1/N or higher vanish. This is
indeed confirmed as shown in Figures 1 and 2. The devia-
tion at small U is because of the neglect in equation (2) of
the contribution from the single particle excitations across
the charge gap, arising from the imaginary part of χ0(ω)
in equation (1).

The sum 〈S+S− + S−S+〉RPA yields a measure of
transverse spin fluctuations about the HF state, and in
the strong coupling for spin S, one obtains 〈S+S− +
S−S+〉RPA = (2S)

∑
q 1/

√
1− γ2

q [4,16]. Using the iden-

tity, 〈SzSz〉 = S(S+ 1)−〈S+S−+S−S+〉/2 in this limit,
the sublattice magnetization m = 〈2Sz〉 is then obtained
from,

〈Sz〉 = S

[
1− 1

S

(
〈S+S− + S−S+〉

2S
− 1
)]1/2

. (4)

To order 1/2S, this yields the correction to the sublat-
tice magnetization of (2S)−1

∑
q[(1−γ2

q )−1/2−1] = 0.156
and 0.393 for S = 1/2 in three and two dimensions, respec-
tively. This same result at one loop level was also obtained
from a different approach in terms of the electronic spec-
tral weight transfer [3,4], and is in exact agreement with
the SWT result [16,17].

As 〈Sz〉HF is the maximum (classical) spin polariza-
tion in the z-direction, and therefore also the maximum
eigenvalue of the local Sz operator, therefore for arbitrary
U , the HF magnitude 〈Sz〉HF plays the role of the effective
spin quantum number, S. The sublattice magnetizationm
is therefore obtained from m = mHF − δmSF, where the
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Fig. 1. The sublattice magnetization m vs. U in two dimen-
sions (diamonds), along with the HF results from (i) the self-
consistency condition (dashed), and (ii) 〈2Sz〉HF = 〈S+S− −
S−S+〉RPA (plus).
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Fig. 2. The sublattice magnetization m vs. U in three di-
mensions (diamonds), along with the HF results from (i)
the self-consistency condition (dashed), and (ii) 〈2Sz〉HF =
〈S+S− − S−S+〉RPA (plus).

first-order, quantum spin-fluctuation correction δmSF is
obtained from equation (4) with S = 〈Sz〉HF,

δmSF =
〈S+S− + S−S+〉RPA

〈S+S− − S−S+〉RPA
− 1. (5)

In the strong coupling limit U/t → ∞, 〈S+S− −
S−S+〉RPA = 〈2Sz〉HF = 1 for S = 1/2, so that
the spin-fluctuation correction simplifies to, δmSF =
2〈S−S+〉RPA. For a site on the B sublattice, where
〈S+S− − S−S+〉RPA = 〈2Sz〉HF = −1, we have δmSF =
2〈S+S−〉RPA.

The U -dependence of sublattice magnetization m is
shown in Figures 1, and 2 for d = 2 and d = 3, respec-
tively. In both cases it interpolates properly between the
weak and strong coupling limits, approaching the SWT
results 0.607 and 0.844, respectively, as U/t → ∞. A
comparison of the m vs. U behaviour with earlier re-
sults is presented in Figure 3 for the well studied d = 2
case. Earlier studies have employed a variety of meth-
ods including the variational Monte Carlo (VMC) [19],
self-energy corrections (SE) [18], quantum Monte Carlo
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Fig. 3. The sublattice magnetization m vs. U from our RPA
spin-fluctuation approach (solid line) compared with earlier re-
sults — VMC [19] (diamonds), SE [18] (dash-dot), QMC [20]
(errorbars), and GLSWA [22] (dash). Also shown is the HF re-
sult (dotted). The arrows denote the asymptotic results of (a)
[2] and (b) [1].
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Fig. 4. The spin-fluctuation correction to sublattice magneti-
zation δmSF vs. 1/L, for L = 8, 10, 12, 14, 16.

(QMC) [20], functional-integral schemes [21], the general-
ized linear spin-wave approximation (GLSWA) [22], and
mapping of low-energy excitations to those of a QHAF
with U -dependent, extended-range spin couplings [23].

In addition to the two-sublattice basis, we have also
used the full site representation in the strong coupling
limit, in order to illustrate the scaling of the quantum
correction with system size. Here the χ0 matrix is evalu-
ated and diagonalized in the site basis for finite lattices.
Results for lattice sizes with 8 ≤ L ≤ 16 are shown in
Figure 4. A quadratic least-square fit is used to extrap-
olate to infinite system size, which yields δmSF(1/L →
0) = 0.39, in agreement with the result from equation (4).

4 Spin vacancies

The site representation has also been used to obtain trans-
verse spin fluctuations for the problem of spin vacancies
in the AF in the limit U/t → ∞. As mentioned already
this method is applicable in the whole range of vacancy
concentration, and allows determination of the critical
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vacancy concentration at which the AF order parameter
vanishes. For the vacancy problem we consider the follow-
ing Hamiltonian on a square lattice with nearest-neighbor
(NN) hopping,

H = −
∑
<ij>σ

tij(a
†
iσajσ + h.c.) + U

∑
i

n̂i↑n̂i↓ , (6)

where the hopping terms tij = 0 if sites i or j are va-
cancy sites, and tij = t otherwise. Thus, for a vacancy on
site i, all hopping terms tij connecting i to its NN sites
j are set to zero. The vacancy site is thus completely de-
coupled from the system. Half-filling is retained by having
one fermion per remaining site. We consider the U/t→∞
limit, where the local moments are fully saturated, and the
vacancy problem becomes identical to the spin-vacancy
problem in the QHAF. This is also equivalent to the prob-
lem of non-magnetic impurities in the AF in the limit of
the impurity potential V →∞ [14,15].

The structure of the χ0(ω) matrix in the host AF, and
the modification introduced by spin vacancies has been
considered earlier in the context of static impurities [15].
As the Goldstone mode is preserved, it is convenient to
work with the matrix K ≡ U [1 − Uχ0], inverse of which
yields the spin propagator in equation (1) near the mode
energies. When expressed in units of U2t2/∆3 = 2J , where
2∆ = mHFU is the AF gap parameter, and J = 4t2/U , it
has the following simple structure for the host AF:

K0
ii = 1 + ω i in A sublattice

K0
ii = 1− ω i in B sublattice

K0
ij = 1/4 j is NN of i. (7)

Vacancies introduce a perturbation in K due to absence of
hopping between the vacancy and NN sites, and we take
δK ≡ −U2δχ0 to refer to this vacancy-induced perturba-
tion, so that K = K0 + δK. If site i is a vacancy site and
j the NN sites, then the matrix elements of δK are,

δKij = δKji = δKjj = −1/4 , (8)

and the magnitude of Kii is irrelevant since the vacancy
site i is decoupled. Thus Kij = 0, reflecting the decoupling
of the vacancy, and the static part of the diagonal matrix
elements Kjj on NN sites are reduced by 1/4. For n va-
cancies on NN sites, the static part is 1−n/4. This ensures
that the Goldstone mode is preserved. Thus if a spin on
site j were surrounded by a maximum of four vacancies
on NN sites, then the static part vanishes, and Kjj = ±ω,
representing an isolated spin, which yields a 1/ω pole in
the transverse spin propagator. This is an isolated single-
spin cluster, and with increasing vacancy concentration,
larger isolated spin clusters are formed. As these are de-
coupled from the remaining system, their spin-fluctuation
contributions are not included, as the OP vanishes for
finite spin clusters. When x exceeds the percolation
threshold ∼ 0.4, the fraction of macroscopically large spin
clusters in the system vanishes, and therefore no AFLRO
is possible for x > 0.4.
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Fig. 5. The spin-fluctuation correction to sublattice magneti-
zation δmSF vs. x, for L = 10 (diamonds), 12 (plus), and 14
(squares).

For a given vacancy concentration and system size,
the appropriate number of vacancies are placed ran-
domly across the lattice, and the matrix K constructed
accordingly. Exact diagonalization of K is carried out,
and the eigensolutions are used to compute the trans-
verse spin correlations from equation (2). The quantum,
spin-fluctuation correction is then obtained from the
strong-coupling limit of equation (5). The transverse spin
correlation 〈S−S+〉 is averaged over all spins within the
A sublattice. As mentioned already, only the spins in the
macroscopic cluster spanning the whole lattice are consid-
ered, and contributions from spins in isolated spin clusters
are excluded. Configuration averaging over several realiza-
tions of the vacancy distribution is also carried out.

The quantum spin-fluctuation correction vs. vacancy
concentration is shown in Figure 5 for three lattice sizes,
L = 10, 12, 14. Best fits are obtained with an expression
including a cubic term, δmSF = α+βx+γx3. For the three
lattice sizes α =0.236, 0.260 and 0.278, respectively, and as
shown in Figure 3, it extrapolates to 0.39 as 1/L→ 0. The
coefficient of the linear term is found to be nearly indepen-
dent of system size, β ≈ 0.42. And the cubic term γ takes
values approximately 3.6, 4.0, and 4.4 for the three lattice
sizes, and extrapolates to about 6.5 as 1/L → 0. With
these coefficients, the spin-fluctuation correction δmSF is
nearly 1 for x = 0.4. Beyond x = 0.4, the percolation
limit, there is no single, macroscopically large spin clus-
ter left in the system. Therefore the point where the AF
order parameter vanishes and AFLRO is destroyed due
to spin fluctuations nearly coincides with the percolation
threshold. This is in agreement with results from series
expansion [24] and quantum Monte Carlo simulations [25]
of the QHAF with spin vacancies.

5 Random-U model

We now consider a quenched impurity model with a ran-
dom distribution of impurity sites characterized by a lo-
cal Coulomb interaction U ′ 6= U for the host sites. With
H and I referring to the sets of host and impurity sites
respectively, we consider the following Hubbard model in
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the particle-hole symmetric form at half-filling and on a
square lattice,

H = −t
∑
〈ij〉σ

(a†iσajσ + h.c.) + U
∑
i∈H

(ni↑ −
1
2

)(ni↓ −
1
2

)

+ U ′
∑
i∈I

(ni↑ −
1
2

)(ni↓ −
1
2

). (9)

The motivations for studying this impurity model are
threefold. In view of the observed enhancement of mag-
netic order at low concentration of impurities [6], we shall
analyze the suppression of quantum spin fluctuations to
examine whether this is due to a local suppression at the
low-U sites. The RPA evaluation of transverse spin cor-
relations is also extended to the case of site-dependent
interactions. Furthermore, at half-filling this model also
provides a simplistic representation for magnetic impu-
rity doping in an AF. This may appear contradictory in
view of the apparently nonmagnetic (U ′ ≈ 0) nature of
the impurity sites. However, this feature is expressed only
away from half-filling [6].

The atomic limit t = 0 provides a convenient starting
point for further discussions. In the particle-hole symmet-
ric form of equation (9), since not only local interaction
terms, but the on-site energy terms are also modified (from
−U/2 to−U ′/2) at the impurity sites, therefore the energy
levels for added hole and particle are (−U/2, U/2) and
(−U ′/2, U ′/2) for host and impurity sites respectively. To
order t2, this impurity model therefore canonically maps
to the following S = 1/2 Heisenberg model

Heff = J
∑
〈ij〉∈H

(
Si · Sj −

1
4

)

+ J ′
∑
i∈I

∑
δ

(
Si · Si+δ −

1
4

)
(10)

where in the first term J = 4t2/U is the conventional
exchange coupling between neighboring host spins, and
J ′ = 8t2/(U + U ′) is the exchange coupling between im-
purity spins and neighboring host spins. In writing equa-
tion (10) we have assumed the dilute impurity limit, and
discounted the possibility of two impurity spins occupy-
ing NN positions, in which case the impurity-impurity ex-
change coupling will be 4t2/U ′.

Therefore, in the strong correlation limit, this random-
U model also describes magnetic impurities in the AF
within an impurity-spin model. The magnetic-impurity
doping is characterized by identical impurity and host
spins (S′ = S), but with different impurity-host exchange
coupling (J ′ 6= J). Both cases J ′ > J or J ′ < J are
possible, and in this paper we have considered the two
cases: (i) U ′ � U so that J ′ ≈ 2J , and U ′ = 3U so that
J ′ = J/2. While this model is easily generalized to other
magnetic-impurity models represented by locally modified
impurity-host hopping terms t′ 6= t, and/or different im-
purity energy levels, in fact, the essential features are al-
ready contained here as the impurity exchange coupling
J ′ is the relevant quantity in determining the spin fluctu-
ation behavior.

5.1 RPA with site-dependent interaction

We recast the RPA expression for the transverse spin prop-
agator in a form suitable for site-dependent interactions.
In terms of a diagonal interaction matrix [U ], with ele-
ments [U ]ii = Ui, the local Coulomb interaction at site i,
the time-ordered transverse spin propagator at the RPA
level can be rewritten, after simple matrix manipulations,
as

[χ−+(ω)] =
[χ0(ω)]

1− [U ][χ0(ω)]
=

1
[A(ω)]

− 1
[U ]

(11)

where [A(ω)] = [U ]− [U ][χ0(ω)][U ] is a symmetric matrix.
As [U ] is non-singular, the singularities in [χ−+(ω)], which
yield the magnon modes, are then given completely by the
vanishing of the eigenvalues of the matrix [A]. In terms of
λn and |φn〉, the eigenvalues and eigenvectors of the ma-
trix [A], we have [A(ω)]−1 =

∑
n λn(ω)−1|φn(ω)〉〈|φn(ω)|,

so that the magnon-mode energies ωn are then given by
λn(ωn) = 0, and in analogy with equation (2) the trans-
verse spin correlations are obtained from,

〈S−i (t)S+
j (t′)〉RPA = ±

∑
n

φin(ωn)φjn(ωn)
(dλn/dω)ωn

eiωn(t−t′).

(12)

As we are interested in the dilute behaviour, we exam-
ine the correction to sublattice magnetization due to two
impurities, one on each sublattice for symmetry. Since
m = mHF− δmSF, corrections to both mHF and δmSF are
expressed in the dilute limit (impurity concentration x)
as mHF = m0

HF − αHFx, and δmSF = δm0
SF − αSFx. The

overall m(x) behavior therefore depends on the relative
magnitude of the coefficients αHF and αSF. For U = 10
and U ′ = 2 we find, at the HF level, that m0

HF = 0.93 and
αHF = 0.19, both quite independent of system size.

The (site-averaged) spin fluctuation correction δmSF is
obtained from equation (5) with and without impurities,
and the impurity contribution extracted. For U ′ = 2 we
find a net reduction in δmSF. Divided by 2/N , the impu-
rity concentration, this yields the coefficient αSF defined
above, and also the per-impurity contribution to the to-
tal spin fluctuation correction over the whole lattice. The
spin-fluctuation correction δmSF for the pure case, and the
per-impurity contribution (αSF) are shown in Figure 6 for
different lattice sizes, along with least-square fits. It is seen
that in the infinite size limit, the per-impurity reduction
is nearly 0.2, which is more than half of the correction per
site in the pure case (0.35). Thus, there is a substantial
reduction in the averaged spin fluctuation correction due
to the low−U impurities.

As the two coefficients αHF and αSF are very nearly
the same, the sublattice magnetization

m(x) = m(0)− (αHF − αSF)x (13)

shows negligible concentration dependence. Thus the (rel-
atively small) reduction in the HF value due to the low-U
impurities is almost fully compensated by the (relatively
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Table 1. The local spin-fluctuation corrections δmi
sf for a 16 × 16 system (U = 10), with two impurities at (11,4) and (4,14).

For the two cases U ′ = 2 (J ′ ≈ 2J) and U ′ = 30 (J ′ = J/2), quantum corrections are enhanced/suppressed locally at the
impurity sites (indicated in boldfaces), but are suppressed/enhanced on the average.

site 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0.252 0.251 0.251 0.251 0.253 0.252 0.253 0.251
2 U ′ = 2 0.252 0.252 0.245 0.253 0.251 0.253 0.251 0.253
3 0.253 0.241 0.239 0.240 0.253 0.251 0.252 0.252
4 0.246 0.239 0.295 0.239 0.245 0.251 0.252 0.251
5 0.253 0.241 0.239 0.241 0.252 0.251 0.251 0.252
6 0.252 0.253 0.245 0.252 0.251 0.251 0.252 0.250
7 0.253 0.252 0.252 0.252 0.251 0.252 0.251 0.252
8
9
10 0.253 0.253 0.253 0.253 0.253 0.253 0.253 0.253
11 0.253 0.253 0.253 0.253 0.254 0.253 0.253 0.252
12 0.253 0.254 0.253 0.261 0.253 0.254 0.252 0.253
13 0.253 0.253 0.265 0.248 0.265 0.253 0.254 0.253
14 0.253 0.261 0.248 0.158 0.248 0.261 0.253 0.253
15 0.254 0.253 0.264 0.248 0.265 0.253 0.253 0.253 U ′ = 30
16 0.253 0.253 0.253 0.260 0.253 0.253 0.253 0.253

substantial) reduction in the spin fluctuation correction.
To first order in x, we thus find that there is nearly no
loss of AF order due to the low-U impurities. As men-
tioned earlier, even a slight enhancement in the AF order
was recently seen for the case U ′ = 0 [6].

We next examine the site-dependence of the local spin
fluctuation corrections δmi

SF near the impurities. Table 1
shows that spin fluctuation is actually enhanced on the
low-U impurity sites. The suppression of δmi

SF in the
vicinity more than compensates for this local enhance-
ment, resulting in an overall reduction on the average.
On the other hand, for U ′ = 30, we find that the correc-
tion is suppressed on the high-U impurity site, while it is
enhanced on the average. Thus, to summarize, when the
impurity spin is coupled more strongly (weakly), the spin-
fluctuation correction is enhanced (suppressed) locally at
the impurity site, but the average correction to sublattice
magnetization is suppressed (enhanced).

This local enhancement can be understood in terms
of the correlations 〈S−i S+

i 〉 as follows. Since the impurity
spin is more strongly coupled to the neighboring spins, the
NN matrix elements Aiδ are enhanced. This puts more
magnon amplitude φ on the impurity site, so that from
equation (2) the transverse spin correlations 〈S−i S+

i 〉, and
therefore the spin-fluctuation correction, are enhanced for
low-U impurities. The overall decrease in the averaged
fluctuation correction, however, is due to the stiffening of
the magnon spectrum in the important low-energy sector,
following from the increased average spin coupling.

While these results also follow from the impurity-spin
picture, the small charge gap at the impurity site does
have an impact on the magnon spectrum. Within the lo-
calized spin picture, the highest-energy magnon mode cor-
responding to a local spin deviation at the impurity site
would cost energy 4×J ′/2 = 16t2/(U +U ′). However, the
highest energy in the magnon spectrum is actually seen to
be 1.05t, which is substantially smaller than 2J ′ = 1.33t.

U
0
= 2

U = 10

d = 2

1=L

�
m
S
F

0.140.120.100.080.060.040.020.00

0.35

0.30

0.25

0.20

0.15

0.10

0.05

Fig. 6. The per-impurity reduction in the spin-fluctuation cor-
rection to sublattice magnetization δmSF vs. 1/L (plus), for
finite lattices with L = 8, 10, 12, 14, 16. Also shown is the
correction per site for the pure system (diamonds), indicating
significant relative impurity contribution.

This shows the compression effect of the low charge gap
(2.75t) on the magnon spectrum [26].

In conclusion, using a convenient numerical method for
evaluating transverse spin correlations at the RPA level,
quantum spin-fluctuation corrections to sublattice mag-
netization are obtained for the half-filled Hubbard model
in the whole U/t range. Results in two and three di-
mensions are shown to interpolate properly between both
the weak and strong correlation limits, and approach the
SWT results as U/t → ∞. The method is readily ex-
tended to other situations of interest involving defects in
the AF, such as vacancies/impurities/disorder. Numeri-
cal diagonalization for finite lattices, along with finite-
size scaling tested with the pure Hubbard model, allows
for exact treatment of defects at the RPA level. This is
illustrated with a study of the defect-induced enhance-
ment/suppression in transverse spin fluctuations for spin
vacancies and low-U impurities in two dimensions. While
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the quantum spin fluctuation correction to sublattice mag-
netization is sharply enhanced by spin vacancies, it is
strongly suppressed by the low-U impurities, although the
fluctuation correction is enhanced at the low-U sites.
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